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Abstract Inertial effects in fluctuations of the work to sustain a system in a nonequilibrium
steady state are discussed for a dragged massive Brownian particle model using a path inte-
gral approach. We calculate the work distribution function in the laboratory and comoving
frames and prove the asymptotic fluctuation theorem for these works for any initial condi-
tion. Important and observable differences between the work fluctuations in the two frames
appear for finite times and are discussed concretely for a nonequilibrium steady state initial
condition. We also show that for finite times a time oscillatory behavior appears in the work
distribution function for masses larger than a nonzero critical value.

Keywords Inertial effects · Critical mass · Nonequilibrium work fluctuations and
theorem · Path integration · Laboratory and comoving frames

1 Introduction

In recent years, fluctuations in nonequilibrium systems have drawn considerable attention
to a new kind of fluctuation theorems. These fluctuation theorems are asymmetric relations
for the distribution functions for work, heat, etc., and may be satisfied even far from equi-
librium states or for small systems in which the magnitude of the fluctuations can be large.
These fluctuation theorems have been proved for deterministic thermostated systems [1–4]
as well as for stochastic systems [5, 6], and have also been discussed in connection with the
Onsager–Machlup fluctuation theory [7]. Moreover, experimental confirmations for these
theorems have been obtained [8–11]. It has also been shown that the fluctuation theorems
include the fluctuation-dissipation theorem, as well as Onsager’s reciprocal relations, near
equilibrium states [1, 6, 12, 13].

In our previous paper [7], based on a generalization of the Onsager–Machlup theory for
fluctuations around equilibrium to those around nonequilibrium steady states using a path
integral approach, we discussed fluctuation theorems for a stochastic dynamics described
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by a Langevin equation. For a Brownian particle driven by a mechanical force F(xs, s), the
Langevin equation for the particle position xs at time s is of the general form

m
d2xs

ds2
= −α

dxs

ds
+ F(xs, s) + ζs (1)

with the mass m of the particle, the friction coefficient α and a random noise ζs . In our
previous paper, as a nonequilibrium model we considered a dragged Brownian particle, in
which the mechanical force is given by a harmonic force F(xs, s) = −κ(xs − vs) with the
spring constant κ and the dragging velocity v. Furthermore we mainly considered this model
under the over-damped assumption. This assumption can be used for a dynamics on a much
longer time scale than the inertial characteristic time τm ≡ m/α, and the dynamical equation
under this assumption is simply given by neglecting the inertial term containing the mass in
(1), i.e. by

dxs

ds
= 1

α
F(xs, s) + 1

α
ζs. (2)

Equation (2) is much simpler than (1), but information of the system on the shorter time
scale than τm is lost in (2). It may be noted that Machlup and Onsager already developed
their fluctuation theory around equilibrium not only for the case corresponding to the over-
damped case [14] but also for the inertial case [15]. In our previous paper we discussed also
a generalization of the Onsager–Machlup theory for nonequilibrium steady states including
the inertial term [7]. However, there we treated only one type of fluctuation theorem, the so
called transient fluctuation theorem [2], which is restricted to equilibrium initial conditions.
Another fluctuation theorem, the asymptotic fluctuation theorem [3, 4], which holds for any
initial condition (including a nonequilibrium steady state1), was not discussed for inertial
cases in [7]. Different from the transient fluctuation theorem, which is correct for all times
as a mathematical identity [16], the asymptotic fluctuation theorem is satisfied in the long
time limit only. However, as we will discuss in this paper, a variety of interesting inertial
effects appear for finite times for a nonequilibrium initial condition, before the asymptotic
fluctuation theorem is achieved. Although there are some results for fluctuation theorems for
stochastic systems including inertia [17–19], the asymptotic fluctuation theorem with inertia
has not been discussed fully in connection with the Onsager–Machlup theory so far.

The purpose of this paper is therefore to discuss, in the context of the Onsager–Machlup
path integral approach, inertial effects in nonequilibrium steady state work fluctuations,
including the asymptotic fluctuation theorem. For these discussions we use the Langevin
equation (1) for a dragged Brownian particle without the over-damped assumption. The
work distribution function is calculated explicitly for any initial condition, and its finite time
properties are investigated. As an important inertial effect we show a critical value of the
mass above which the work distribution function shows a time-oscillatory behavior.

The nonequilibrium work used in this paper is based on the generalized Onsager–
Machlup theory, as obtained in our previous paper [7]. In that paper we considered two
kinds of work in two different frames: (A) the work Wl done in the laboratory frame (l), and
(B) the work Wc done in the comoving frame (c), where the average velocity of the Brown-
ian particle is zero in a nonequilibrium steady state. A difference between these two works

1A fluctuation theorem for a nonequilibrium steady state initial condition has been called the steady state
fluctuation theorem (or the Gallavotti–Cohen fluctuation theorem [3, 4]), which is a special case of asymptotic
fluctuation theorems.
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is that Wc includes a d’Alembert-like force, which is absent in Wl . In this paper, we show
that both the works Wl and Wc satisfy the asymptotic fluctuation theorem. We also discuss
dramatic differences between the work distribution functions for Wl and Wc for finite times.

The outline of this paper is as follows. In Sect. 2 we introduce a dragged Brownian par-
ticle model with inertia, and treat its dynamics using a path integral. In Sect. 3 we introduce
the works done in the laboratory and comoving frames and calculate their distribution func-
tions. In Sect. 4 we prove the asymptotic work fluctuation theorem. In Sect. 5 we discuss
inertial effects in the work distribution functions for finite times. Finally, Sect. 6 is devoted
to a summary and some remarks on this paper.

2 Dragged Brownian Particle with Inertia

We consider a Brownian particle confined by a harmonic potential, which moves with a
constant velocity v through a fluid, as discussed in our previous paper [7]. The dynamics of
this particle is described by a Langevin equation

m
d2xs

ds2
= −α

dxs

ds
− κ(xs − vs) + ζs. (3)

Here, we assume that ζs is the Gaussian-white random force whose probability functional
Pζ ({ζs}) for {ζs}s∈[t0,t] is given by

Pζ ({ζs}) = Cζ exp

(
− β

4α

∫ t

t0

ds ζ 2
s

)
(4)

with the normalization coefficient Cζ and the inverse temperature β ≡ 1/(kBT ), where kB

is Boltzmann’s constant and T is the temperature of the heat reservoir. [Note that the coeffi-
cient Cζ can depend on the initial time t0 and the final time t , but such time dependences in
Cζ , as well as in similar coefficients Cx and CE introduced later, are suppressed.] It follows
from (4) that the first two auto-correlation functions of the random force ζs are given by
〈ζs〉 = 0 and 〈ζs1ζs2〉 = (2α/β)δ(s1 − s2) with the notation 〈· · ·〉 for an ensemble average.

Now, we consider the probability functional Px({xs}) for a path {xs}s∈[t0,t] of the particle
position xs . By inserting (3) into (4) and interpreting the probability functional Pζ ({ζs})
for ζs as the probability functional Px({xs}) for xs , we obtain, apart from a normalization
coefficient,

Px({xs}) = Cx exp

[
− 1

4D

∫ t

t0

ds

(
ẋs + xs − vs

τr

+ m

α
ẍs

)2]
(5)

with ẋs ≡ dxs/ds, ẍs ≡ d2xs/ds2 and the normalization coefficient Cx . Here, D ≡ kBT /α is
the diffusion constant given by the Einstein relation and τr ≡ α/κ is the relaxation time in the
over-damped case. For another derivation of (5) via a Fokker–Planck equation corresponding
to the Langevin equation, see, for example, [20].

For systems whose dynamics is expressed by a second-order Langevin equation, like (3),

we introduce the path integration of any functional X({xs}) as
∫ (xt ,ẋt )=(xf ,pf /m)

(xt0 ,ẋt0 )=(xi ,pi/m) DxsX({xs}),
with respect to paths {xs}s∈(t0,t) satisfying the initial (i) condition (xt0 , ẋt0) = (xi,pi/m) and
the final (f ) condition (xt , ẋt ) = (xf ,pf /m). Using this notation for the functional integral,
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the functional average 〈〈X({xs})〉〉t over all possible paths {xs}s∈(t0,t), as well as averages
over the initial and final positions and momenta of the particle is represented by

〈〈X({xs})〉〉t ≡
∫ ∫

dxidpi

∫ (xt ,ẋt )=(xf ,pf /m)

(xt0 ,ẋt0 )=(xi ,pi/m)

Dxs

∫ ∫
dxf dpf

× X({xs})Px({xs})f (xi,pi, t0) (6)

with the initial distribution function f (xi,pi, t0) for the particle position xi and momen-
tum pi . The normalization condition to specify the coefficient Cx of the distribution func-
tional (5) is given by 〈〈1〉〉t = 1 using the notation (6) as well as the normalization condition∫∫

dxidpif (xi,pi, t0) = 1 for the initial distribution function.
This finishes the introduction of our model and its dynamics. In Sect. 3 we introduce the

work done on this system and calculate its probability distribution.

3 Work Distribution

3.1 Work to Drag a Brownian Particle and its Distribution

In our previous paper [7], we considered the work W to move the confining potential with
a velocity v in two frames; the laboratory frame using the particle position xs and the co-
moving frame using the particle position ys ≡ xs − vs at time s. Based on a generalized
Onsager–Machlup theory, we showed in [7] that the work Wl done in the laboratory frame
is given by

∫ t

t0
ds [−κ(xs − vs)]v, and the work Wc done in the comoving frame is given by∫ t

t0
ds (−κys −mÿs)v with ÿs ≡ d2ys/ds2 = ẍs , leading to a difference between the work W

in these two frames by an inertial or d’Alembert-like force −mÿs . To understand this dif-
ference in a concise way, note first that by the energy conservation law, the work W is given
by the heat Q and the energy difference �E, namely by W = Q + �E, where the energy
difference �E is the sum of the kinetic energy difference �K and the potential energy dif-
ference �U , i.e. �E = �K +�U . Here, the kinetic energy difference �K is either �Kc or
�Kl in the comoving frame or the laboratory frame, i.e. given either by (mẏ2

t /2)− (mẏ2
t0
/2)

or by (mẋ2
t /2) − (mẋ2

t0
/2), respectively, so that we obtain the relation

�Kc = �Kl −
∫ t

t0

ds mẍsv. (7)

Equation (7) means that the kinetic energy difference �K depends on the frames and its
frame-difference is determined by the d’Alembert-like force −mẍs as a purely inertial effect.
On the other hand, different from �K , the heat Q (as well as the potential energy difference
�U ) has the same value in the laboratory and the comoving frames.2 Combining these
facts with the energy conservation law W = Q + �K + �U , we obtain the work relation
Wc = Wl − ∫ t

t0
ds mẍsv. A more complete explanation for this frame-dependence of the

work is given in [7].3

2This follows from the generalized Onsager–Machlup theory in which the heat Q is defined by Q =
T

∫ t
t0

ds Ṡ with the entropy production rate Ṡ derived from a Lagrangian function [cf. (18) and (21) in [7]].

3In [7], using a nonequilibrium generalization of the detailed balance condition [cf. (97) and (98) in [7]] we
showed that the force difference between the comoving and laboratory frame is given by the d’Alembert-like
force −mẍs [cf. Table 1 in [7]], implying a work difference −∫ t

t0
ds mẍsv in these two frames.
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To discuss these two different kinds of work done in the laboratory and comoving frames
simultaneously in this paper, we consider the work defined in general by

W({xs}) =
∫ t

t0

ds [−κ(xs − vs) − (1 − ϑ)mẍs]v, (8)

which gives the work Wl done in the laboratory case (ϑ = 1) as well as the work Wc done
in the comoving case (ϑ = 0) by changing value of the parameter ϑ .4

Using the functional average defined by (6), the probability distribution Pw(W) for the
dimensionless work βW({xs}) is given by

Pw(W, t) = 〈〈δ(W − βW({xs}))〉〉t . (9)

For later calculative convenience, we introduce a Fourier transformation Ew(iλ, t) of the
work distribution function Pw(W, t) through the function Ew(λ, t) defined by

Ew(λ, t) ≡ 〈〈e−λβW({xs })〉〉t , (10)

so that the work distribution function Pw(W) can be represented as

Pw(W, t) = 1

2π

∫ +∞

−∞
dλEw(iλ, t) eiλW . (11)

The function Ew(λ, t) can be also regarded as a generating function for the work W({xs}).
By (10) we obtain a useful identity

Ew(0, t) = 1 (12)

used to determine a normalization constant later (43).

3.2 Path Integral Analysis for Work Distribution

To calculate the function Ew(λ, t) from (10), we first note that

Ew(λ, t) = Cx

∫ ∫
dxidpi

∫ (xt ,ẋt )=(xf ,pf /m)

(xt0 ,ẋt0 )=(xi ,pi/m)

Dxs

∫ ∫
dxf dpf

× f (xi,pi, t0) exp

[∫ t

t0

ds L(ẍs, ẋs , xs, s)

]
(13)

by (5, 6, 8, 10). Here, L(ẍs, ẋs , xs, s) is defined by

L(ẍs, ẋs , xs, s) ≡ − 1

4D

(
ẋs + xs − vs

τr

+ m

α
ẍs

)2

+ λβ[κ(xs − vs) + (1 − ϑ)mẍs]v, (14)

which may be interpreted as a Lagrangian function including a Lagrange multiplier λ due to
the restriction of the delta function for work in (9) [7].5 Here, as elsewhere in this paper, the

4The parameter ϑ in (8) is chosen in a way consistent to that in our previous paper [7].
5In [7] we called only the first term on the right-hand side of (14) the Lagrangian function in the Onsager–
Machlup theory, which is directly connected to a transition probability.
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dependence of L(ẍs, ẋs , xs, s) on the parameters v, ϑ , etc., has not been explicitly indicated
on the left-hand side of (14).

The first step to calculate the function Ew(λ, t) is to specify the most-contributing path
{x∗

s }s∈[t0,t] in the path integral involved on the right-hand side of (13). Such a special path
{x∗

s }s∈[t0,t] is introduced as the one satisfying the variational principle

δ

∫ t

t0

ds L(ẍ∗
s , ẋ

∗
s , x

∗
s , s) = 0 (15)

with the four boundary conditions x∗
t0

= xi , ẋ∗
t0

= pi/m, x∗
t = xf and ẋ∗

t = pf /m. In a
way similar to derive the Euler–Lagrange equation from the minimum action principle in
analytical mechanics [21], (15) leads to

d2

ds2

∂L(ẍ∗
s , ẋ

∗
s , x

∗
s , s)

∂ẍ∗
s

− d

ds

∂L(ẍ∗
s , ẋ

∗
s , x

∗
s , s)

∂ẋ∗
s

+ ∂L(ẍ∗
s , ẋ

∗
s , x

∗
s , s)

∂x∗
s

= 0. (16)

Inserting (14) into (16) we obtain a fourth-order linear differential equation

τ 2
m

d4x̃∗
s

ds4
−

(
1 − 2

τm

τr

)
d2x̃∗

s

ds2
+ 1

τ 2
r

x̃∗
s = 0 (17)

for the function x̃∗
s of s, which is defined by

x̃∗
s ≡ x∗

s − vs + (1 − 2λ)vτr , (18)

using the inertial characteristic time τm ≡ m/α.
We consider solutions of (17) of the form exp(νs). Inserting x̃∗

s = exp(νs) into (17) we
obtain the quadratic equation

τ 2
mν4 −

(
1 − 2

τm

τr

)
ν2 + 1

τ 2
r

=
(

τmν2 + ν + 1

τr

)(
τmν2 − ν + 1

τr

)
= 0 (19)

for ν. The solutions of (19) are ν = ν+ , ν− ,−ν− ,−ν+ using ν± defined by

ν± ≡ 1

2τm

(
1 ±

√
1 − 4

τm

τr

)
. (20)

The general solution of the fourth-order differential equation (17) is represented as a super-
position of these special solutions exp(νs), ν = ν+ , ν− ,−ν− ,−ν+ , namely

x̃∗
s = C1e

ν+ s + C2e
ν− s + C3e

−ν− s + C4e
−ν+ s (21)

with constants Cj , j = 1,2,3,4. Using (18) and (21) and introducing the 4-dimensional
vector C ≡ (C1 C2 C3 C4)

T ,6 we can rewrite

x∗
s = CT Ks + vs − (1 − 2λ)vτr (22)

6In this paper, XT means the transposed matrix (or vector) of any matrix (or vector) X.
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where the 4-dimensional vector Ks is defined by

Ks ≡

⎛
⎜⎜⎝

eν+ s

eν− s

e−ν− s

e−ν+ s

⎞
⎟⎟⎠ . (23)

The constant vector C is determined by the four boundary conditions for x∗
s and we obtain

C = A−1
t B(1−2λ)

if (24)

where the 4 × 4 matrix At is defined by

At ≡

⎛
⎜⎜⎝

eν+ t0 eν− t0 e−ν− t0 e−ν+ t0

ν+eν+ t0 ν−eν− t0 −ν−e−ν− t0 −ν+e−ν+ t0

eν+ t eν− t e−ν− t e−ν+ t

ν+eν+ t ν−eν− t −ν−e−ν− t −ν+e−ν+ t

⎞
⎟⎟⎠ (25)

and the 4-dimensional vector B(z)
if is defined by

B(z)
if ≡

⎛
⎜⎜⎝

xi − vt0
pi/m − v

xf − vt

pf /m − v

⎞
⎟⎟⎠ + zvτr

⎛
⎜⎜⎝

1
0
1
0

⎞
⎟⎟⎠ . (26)

It may be noted that the first component xi − vt0 and the second component (pi/m) − v

[the third component xf − vt0 and the fourth component (pf /m)− v] of the vector B(0)
if can

be regarded as the initial [final] position and velocity of the particle in the comoving frame,
respectively.

As the next step, we represent a path {xs}s∈[t0,t] as the sum of the most contributing path
{x∗

s }s∈[t0,t] given by (22) and its deviation {�xs}s∈[t0,t] defined by

�xs ≡ xs − x∗
s , (27)

where the variable �xs satisfies the four boundary conditions �xt0 = �xt = 0 and
�ẋt0 = �ẋt = 0 with �ẋs ≡ d�xs/ds. Using this variable �xs , the complete time integral∫ t

t0
ds L(ẍs, ẋs , xs, s) of L(ẍs, ẋs , xs, s) can be represented as

∫ t

t0

ds L(ẍs, ẋs , xs, s) =
∫ t

t0

ds L(ẍ∗
s , ẋ

∗
s , x

∗
s , s)

− 1

4D

∫ t

t0

ds

(
�ẋs + 1

τr

�xs + m

α
�ẍs

)2

, (28)

in terms of the two variables x∗
s and �xs . Inserting (28) into (13) we obtain

Ew(λ, t) = CE

∫ ∫
dxidpi

∫ ∫
dxf dpf

× f (xi,pi, t0) exp

[∫ t

t0

ds L(ẍ∗
s , ẋ

∗
s , x

∗
s , s)

]
(29)



8 J Stat Phys (2008) 130: 1–26

where CE is defined by CE ≡ Cx

∫ (�xt ,�ẋt )=(0,0)

(�xt0 ,�ẋt0 )=(0,0)
D�xs exp[−(1/4D)

∫ t

t0
ds

∫ t

t0
ds(�ẋs +

(1/τr)�xs + (m/α)�ẍs)
2] and is independent of λ. In the expression (29), the contribu-

tions of the deviations �xs to the path integral in the function Ew(λ, t) are included only in
the coefficient CE .

Next, we calculate the quantity
∫ t

t0
ds L(ẍ∗

s , ẋ
∗
s , x

∗
s , s) using (22), and then the function

Ew(λ, t) given by (29). For such a calculation, using (22) we first note that

dx∗
s

ds
= CT �Ks + v, (30)

d2x∗
s

ds2
= CT �2Ks (31)

where the 4 × 4 matrix � is defined by

� ≡

⎛
⎜⎜⎝

ν+ 0 0 0
0 ν− 0 0
0 0 −ν− 0
0 0 0 −ν+

⎞
⎟⎟⎠ . (32)

Then, using (22), (30) and (31) we obtain

ẋ∗
s + x∗

s − vs

τr

+ m

α
ẍ∗

s = CT �Ks + 2λv (33)

where the 4 × 4 matrix � is introduced as

� ≡ τm�2 + � + 1

τr

I

= 2

⎛
⎜⎜⎝

ν+ 0 0 0
0 ν− 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ (34)

with the relation τmν2
± − ν± + τ−1

r = 0 and I the 4 × 4 identity matrix. Using (14, 22, 31,
33) we obtain

L(ẍ∗
s , ẋ

∗
s , x

∗
s , s) = −1

4
αβCT �KsKT

s �C − αβλvCT (τmϑ�2 + �)Ks

−λ(1 − λ)αβv2. (35)

Noting (24) and that
∫ t

t0

ds CT �Ks =
∫ t

t0

ds
dx∗

s

ds
− v(t − t0) = xf − xi − v(t − t0), (36)

∫ t

t0

ds CT �2Ks =
∫ t

t0

ds
d2x∗

s

ds2
= pf − pi

m
(37)

by (30) and (31), we further obtain
∫ t

t0

ds L(ẍ∗
s , ẋ

∗
s , x

∗
s , s) = −1

4
αβ[B(1−2λ)

if ]T �tB
(1−2λ)
if − αβλvηT B(0)

if
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−λ(1 − λ)αβv2(t − t0) (38)

where the 4 × 4 matrix �t and the 4-dimensional vector η are defined by

�t ≡ (A−1
t )T ��t�A−1

t , (39)

η ≡

⎛
⎜⎜⎝

−1
−τmϑ

1
τmϑ

⎞
⎟⎟⎠ , (40)

respectively, with the 4 × 4 matrix �t defined by

�t ≡
∫ t

t0

ds KsKT
s . (41)

Inserting (38) into (29) we obtain

Ew(λ, t) = CEe−λ(1−λ)αβv2(t−t0)

∫ ∫
dxidpi

∫ ∫
dxf dpf f (xi,pi, t0)

× exp

{
−1

4
αβ[B(1−2λ)

if ]T �tB
(1−2λ)
if − αβλvηT B(0)

if

}
.

(42)

Equation (42) gives a concrete form of the function Ew(λ, t) for any initial distribution func-
tion f (xi,pi, t0).

The λ-independent normalization coefficient CE in (42) can be determined from the con-
dition (12), and we obtain

CE =
{∫ ∫

dxidpi

∫ ∫
dxf dpf f (xi,pi, t0)

× exp

{
−1

4
αβ[B(1)

if ]T �tB
(1)
if

}}−1

. (43)

Note that by using the condition (12) we avoided to carry out explicitly the path integral
included originally in the quantity CE [cf. (29)].

Inserting (42) into (11), and carrying out the Gaussian integral over λ appearing then in
(11), we obtain

Pw(W, t) = CE√
4παβv2(t − t0 − τ 2

r JT �tJ)

∫ ∫
dxidpi

∫ ∫
dxf dpf

× f (xi,pi, t0) exp

{
−1

4
αβ[B(1)

if ]T �tB
(1)
if

}

× exp

{
−{W − αβv[v(t − t0) + (ηT − τrJT �t )B

(1)
if ]}2

4αβv2(t − t0 − τ 2
r JT �tJ)

}
(44)
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where the 4-dimensional vector J is defined by

J ≡

⎛
⎜⎜⎝

1
0
1
0

⎞
⎟⎟⎠ (45)

and we used the relation ηT J = 0. Equation (44) is an explicit form for the work distribu-
tion function for all time, and for any initial distribution function f (xi,pi, t0). Using (43)
for the coefficient CE , the work distribution function (44) is properly normalized, namely∫

dW Pw(W, t) = 1, at any time t .
In Sects. 4 and 5 we discuss, using the work distribution function (44), fluctuation prop-

erties of the work from the viewpoint of the asymptotic fluctuation theorem for t → +∞,
as well as for finite times.

4 Asymptotic Fluctuation Theorem

The matrix �t defined by (39) satisfies the condition

lim
t→+∞

1

t − t0
�t = 0, (46)

as shown in Appendix 1. Equation (46) implies that v(t − t0) + (ηT − τrJT �t )B
(1)
if

t→+∞∼ v(t − t0) and t − t0 − τ 2
r JT �tJ

t→+∞∼ t − t0 in (44), so that the work distri-
bution function Pw(W, t) is proportional to the Gaussian function exp{−[W − αβv2

(t − t0)]2/[4αβv2(t − t0)]} in the long time limit t → +∞, i.e.

Pw(W, t)
t→+∞∼ 1√

4παβv2(t − t0)
exp

{
−[W − αβv2(t − t0)]2

4αβv2(t − t0)

}
(47)

regardless of the initial distribution function f (xi,pi, t0). It is important to note that the
work distribution function (47) in the long time limit t → +∞ in the inertial case is the
same as in the over-damped case. Physically, this is, of course, due to the finiteness of the
inertial characteristic time τm, which makes inertial effects disappear in the long time limit.
Nevertheless, the proof of this equivalence is non-trivial.

From (47) we immediately derive

lim
t→+∞

Pw(W, t)

Pw(−W, t)
= eW (48)

for any initial distribution function f (xi,pi, t0). We will call (48) the asymptotic fluctuation
theorem for work. Equation (48) is independent of the value of the parameter ϑ , i.e. of the
frame of reference (laboratory or comoving) or also of the contribution of the d’Alembert-
like force to the work (8).

5 Inertial Effects for Finite Times

5.1 Slope of ln[Pw(W, t)/Pw(−W, t)] and the Critical Mass

In contrast to the asymptotic work distribution function (47), various inertial effects in the
work distribution function appear for finite times. In this section we discuss such inertial
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effects using the function G(W, t) defined by

G(W, t) ≡ ∂

∂W
ln

Pw(W, t)

Pw(−W, t)
. (49)

The function G(W, t) gives the slope of the fluctuation function ln[Pw(W, t) /Pw(−W, t)]
with respect to W , and satisfies

lim
t→+∞G(W, t) = 1 (50)

by the asymptotic fluctuation theorem (48).7

The behavior of G(W, t) for finite times depends on the initial condition. To get concrete
results, in this section we concentrate on the case of a nonequilibrium steady state initial
condition, which can be represented by

f (xi,pi, t0) = β

2π

√
κ

m
exp

{
−β

[
(pi − mv)2

2m
+ 1

2
κ(xi − vt0 + vτr)

2

]}
(51)

for any frame.8 The initial distribution function (51) gives a Gaussian distribution for the
particle initial position xi and momentum pi around their nonequilibrium steady state av-
erage values vt0 − vτr and mv, respectively. Inserting (51) into (44) the work distribution
function is given by

Pw(W, t) =
√

1 − �t

4παβv2(t − t0 − τ 2
r JT �tJ)

× exp

{
− 1 − �t

4αβv2(t − t0 − τ 2
r JT �tJ)

[W − αβv2(t − t0)]2

}

(52)

where �t is defined by

�t ≡ (η − τr�tJ)T [(η − τr�tJ)(η − τr�tJ)T

+ (t − t0 − τ 2
r JT �tJ)(�(0) + �t)]−1(η − τr�tJ) (53)

with the 4 × 4 matrix �(0) defined by

�(0) ≡ 2

α

⎛
⎜⎜⎝

κ 0 0 0
0 m 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ . (54)

7A function like G̃(W, t) ≡ (1/〈W 〉) ln[Pw(W, t)/Pw(−W, t)] with the average work 〈W 〉 has been used

to characterize fluctuation theorems [22, 23]. The function (49) is connected to G̃(W, t) by G(W, t) =
〈W 〉∂G̃(W, t)/∂W . One of the advantage to use G(W, t) instead of G̃(W, t) is that different from G̃(W, t),
G(W, t) is independent of W when the distribution function Pw(W, t) is Gaussian, as shown in (52).
8To show that the distribution (51) is a nonequilibrium steady state distribution, we note that from (3) the
Langevin equation for the variable ỹs ≡ xs − vs + vτr (so that p̃s ≡ mdỹs/ds ≡ mẋs − mv) is given by
md2ỹs /ds2 = −αdỹs/ds − κỹs + ζs , which has the same form as that for equilibrium. Therefore, the equi-
librium canonical distribution [β/(2π)]√κ/m exp{−β[p̃2

s /(2m) + 1
2 κỹ2

s ]} is a steady state solution of the
corresponding Kramers equation [20]. Rewriting this steady state distribution using xs instead of ỹs we obtain
(51).
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[See Appendix 2 for a derivation of (52).] Note that the work distribution function (52)
is Gaussian with the average work 〈W 〉 = αβv2(t − t0) at any time because we chose a
Gaussian nonequilibrium steady state initial condition (51). Since the work distribution
function P (W, t) is Gaussian, G(W, t) defined by (49) is independent of W , so that we
denote it by G(t) [=G(W, t)] from now on. Inserting (52) into (49), we obtain

G(t) = 1 − �t

1 − τ2
r

t−t0
JT �tJ

(55)

as an explicit form of G(t). One may notice that G(t) in (55) is independent of the dragging
velocity v and the inverse temperature β . Moreover, G(t) is positive for t > t0 because the
distribution function Pw(W, t) is normalizable so that the coefficient (1 − �t)/[4αβv2(t −
t0 −τ 2

r JT �tJ)] = G(t)/[4αβv2(t − t0)] in the exponent of the Gaussian distribution function
(52) must be positive.

As a first approximation to the asymptotic relaxation of G(t) to its final value (50), we
obtain from (55)

G(t)
t→+∞∼ 1 + τr − τmϑ2

t − t0 − τr + τmϑ2
, (56)

meaning that the function G(t) decays to 1 by a power inversely proportional to the time in
the long time limit t → +∞. [See Appendix 3 for a derivation of (56).] Equation (56) is only
the first approximation for an asymptotic form of G(t), but already includes an important
inertial contribution to G(t), as well as an interesting frame dependence of G(t). Actually,
the second term on the right-hand side of (56) depends on the mass m via τm = m/α in the
laboratory frame ϑ = 1, while that term is independent of the mass in the comoving frame
ϑ = 0. Another interesting property of G(t) expressed by (56) is that in the laboratory frame
ϑ = 1 the second term on the right-hand side of (56), the t−1-decay term of G(t), vanishes
in the case that τr = τm, i.e. for a special mass value m = α2/κ .

Perhaps the most interesting implication of (55) for G(t), although it does not appear
explicitly in the asymptotic expression (56) of G(t), is the existence of a critical value of
the mass m = m∗ above which G(t) shows a time-oscillatory behavior. In our theory, this
time-oscillation has its origin in the time-dependence of x̃∗

s given by (21) via the exponential
terms exp(ν± t), etc., when the coefficient ν± given by (20) has an imaginary part, namely
when the condition

m > m∗ ≡ α2

4κ
(57)

(derived from the condition 4τmτ−1
r − 1 > 0) is satisfied. We call the mass m∗ the critical

mass in this paper, since a (smooth) “dynamical” phase transition takes place at m = m∗.
For masses m > m∗, the position x̃∗

s has a time-oscillation with the oscillation period Tm

Tm = 2π

√
m

κ

(
1 − m∗

m

)−1/2

(58)

corresponding to a frequency ω ≡ √
4τmτ−1

r − 1/(2τm) = | Im{ν±}|, using the imaginary part
Im{ν±} of ν± . In Fig. 1 the time-oscillation period Tm (solid line) is shown as a function of the
scaled mass m/m∗ for m/m∗ > 1. There is no time-oscillation of x̃∗

s in the case of m/m∗ <

1, and the time-oscillation period diverges when m/m∗ → 1 + 0. The oscillation period Tm
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Fig. 1 Time oscillation period Tm (solid line) in x̃∗
s as a function of mass m normalized by the critical mass

m∗ ≡ α2/(4κ) for the mass in m/m∗ > 1. There is no time-oscillation for m/m∗ < 1 and the minimum of
Tm is at m/m∗ = 2. Here, we used parameter values α = κ = 1. We also plotted a time-oscillation period

T (0)
m = Tm|α=0(= 2π

√
m/κ) (broken line) for a purely harmonic oscillation in the case without dissipation

(α = 0). The time-oscillation period Tm approaches T (0)
m in the large mass limit m/m∗ → +∞

decreases rapidly as a function of mass m for m/m∗ < 2, has a minimum at m/m∗ = 2,
and increases gradually for m/m∗ > 2. For comparison, we also plotted in Fig. 1 the scaled
mass dependence of the time-oscillation period T (0)

m = 2π
√

m/κ(= Tm|α=0) (broken line)
for a purely harmonic oscillator with spring constant κ . Different from the time-oscillation
period (58), the period T (0)

m is defined for all masses, and increases monotonically as the
mass increases. The time-oscillation period (58) approaches T (0)

m in the large mass limit
m/m∗ → +∞.

It is useful to consider the critical behavior in the time-oscillating behavior of G(t) as due
to the presence of two independent time scales appearing in our model: one characterized by
τr(= α/κ) and another by τm(= m/α). These time scales τm and τr are related by τr = 4τm∗
at the critical mass m = m∗. Using these two time scales, the time oscillation period T (0)

m

for a purely harmonic oscillator is given by T (0)
m = 2π

√
τrτm. Introducing the frequencies

ω(0) ≡ 2π/T (0)
m and ωm ≡ 1/τm corresponding to the two time scales T (0)

m and τm, respec-
tively, the frequency ω ≡ 2π/Tm is represented as ω = √[ω(0)]2 − ω2

m/4 corresponding to
the time-oscillation period (58). In this expression for the frequency ω the time oscillations
occur only when the condition [ω(0)]2 > ω2

m/4 is satisfied. The existence of these two time
scale τm and τr is therefore essential for the time-oscillatory behavior with the frequency ω,
noting that there is no time-oscillation in the over-damped case containing only τr .

In Sects. 5.2 and 5.3, we investigate properties of G(t) in more detail, including its time-
oscillating behavior, for (A) the work done in the laboratory frame (ϑ = 1), and (B) the
work done in the comoving frame (ϑ = 0), separately. We will also compare those results
with those for the over-damped case. For this purpose, we now calculate G(t) explicitly in
the over-damped case. In our previous paper [7], we already calculated the work distribution
function P (0)

w (W, t) for the over-damped case, which is given by

P (0)
w (W, t) = 1√

4παβv2[t − t0 − τr(1 − bt )]
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× exp

{
− [W − αβv2(t − t0)]2

4αβv2[t − t0 − τr(1 − bt )]
}

(59)

with bt ≡ exp[−(t − t0)/τr ] in the case of a nonequilibrium steady state initial distribution
function f (0)(xi, t0) = √

βκ/(2π) exp[−βκ(xi − vt0 + vτr)
2/2] for the particle position xi

for the over-damped case at the initial time t0.9 Using (59), and defining, [cf. (49)], G(0)(t) ≡
(∂/∂W) ln[P (0)

w (W, t)/P (0)
w (−W, t)], we have

G(0)(t) = 1 + τr(1 − bt )

t − t0 − τr(1 − bt )
, (60)

which gives G(t) for the over-damped case [24]. Note that (60) implies G(0)(t)
t→+∞∼ 1 +

τr/(t − t0 − τr), which is consistent with (56), since τm is zero for the over-damped case.

5.2 G(t) in the Laboratory Frame

In this subsection we consider G(t) given by (55)—which depends on the parameter ϑ

to specify a frame via �t —for the work done in the laboratory frame, i.e. for ϑ = 1. In
Sect. 5.2, as well as in Sect. 5.3, we use the parameter values α = κ = 1 and set the initial
time t0 = 0, i.e. τr = 1 as a time unit and m/m∗ = 4τm as the scaled mass.

Figure 2 shows G(t) given by (55) as a function of time t for the scaled masses m/m∗ = 0
(over-damped case), 0.999, 2, 4, 8, 20 and 40. The graphs of G(t) all converge to 1 in the
long time limit t → +∞, as required by the asymptotic fluctuation theorem (48), i.e. by
(50).

We now discuss in some detail the properties of Fig. 2. This figure shows that G(t) for
nonzero masses is always smaller than in the over-damped case of zero mass. In the over-
damped case, G(t) decreases monotonically to the final value 1 from +∞ at the initial time.
A similar behavior is still observed for small masses (e.g. see the graph for m/m∗ = 0.999
in Fig. 2). It may also be noted that for small nonzero masses the relaxation of G(t) to its
final value 1 is faster than in the over-damped case (e.g. see the graphs for m/m∗ = 2 and 4
in Fig. 2). This feature can be explained by the second term on the right-hand side of (56),
since the absolute value |τr − τm| of the numerator of this term is smaller for ϑ = 1 than the
corresponding over-damped value τr in the case of 0 < m/m∗ < 8, using that |τr − τm| < τr .
Moreover, Fig. 2 shows that for large masses (e.g. see the graphs for m/m∗ > 4 in Fig. 2),
G(t) is smaller than 1 for long times, while G(t) is always larger than 1 in the over-damped
case. This is because the second term on the right-hand side of (56) is negative for τr < τm

(i.e. m/m∗ > 4), when ϑ = 1 and t > t0 + τr − τm.
A time-oscillatory behavior of G(t) is clearly visible in Fig. 2 for large masses, i.e. for

m � m∗. To show more clearly the time-oscillatory behavior of G(t) for m > m∗ as opposed
to for m < m∗, we plotted in Fig. 3 the absolute value of the deviation10

�G(t) ≡ G(t) − 1 − τr − τmϑ2

t − t0 − τr + τmϑ2
(61)

9Note that the work distribution function (59) approaches the distribution function (47) in the long time limit

t → +∞ because of t − t0 − τr (1 − bt )
t→+∞∼ t − t0.

10We note that in this subsection we use the function (61) for ϑ = 1, while in Sect. 5.3 we use the function
(61) for ϑ = 0.
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Fig. 2 (Color online) Graphs of G(t) = (∂/∂W) ln[Pw(W, t)/Pw(−W, t)] as a function of time t for the
work done in the laboratory frame (ϑ = 1) in the case of a nonequilibrium steady state initial condition for
t ∈ [0,60]. Inset: graphs of G(t) in a short time period for t ∈ [0,3]. Lines in these graphs correspond to para-
meter values of the scaled masses m/m∗ = 0 (over-damped case), 0.999, 2, 4, 8, 20 and 40 as indicated above
this figure, and we used parameter values α = κ = 1 (so that τr = 1 for a unit time and also m/m∗ = 4τm as
the scaled mass, with m∗ = 1/4) and t0 = 0

Fig. 3 (Color online) Linear-log plots of absolute value |�G(t)| of the function �G(t) = G(t) − 1 −
(τr − τm)/(t − τr + τm) as a function of time t for the work done in the laboratory frame in the case of
a nonequilibrium steady state initial condition. Lines in these graphs correspond to parameter values of the
scaled masses m/m∗ = 0, 0.5, 0.9, 0.999, 1.1, 2, 4 and 20 as indicated above this figure. The minima of the
oscillations of |�G(t)| for m/m∗ > 1 are actually zero, which is not indicated in this figure and Figs. 4, 6
and 7. We use the same parameter values α, κ and t0 as in Fig. 2

of G(t) from its asymptotic form (56) as a function of time t ∈ [0,25] for the cases of
m/m∗ = 0, 0.5, 0.9, 0.999, 1.1, 2, 4 and 20. To illustrate the long time behavior of |�G(t)|
in more detail, we also show in Fig. 4 the absolute value |�G(t)| of �G(t) as functions
of t ∈ [0,1000] for the scaled masses m/m∗ = 100, 200 and 1600 as linear–log plots. The
deviation �G(t) goes to zero when t → +∞ because of the asymptotic fluctuation theorem
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Fig. 4 (Color online) Long time behavior of |�G(t)| as a function of time t as linear–log plots for the
work done in the laboratory frame in the case of a nonequilibrium steady state initial condition. Here, we
use the same parameter values α, κ and t0 as in Fig. 2. Broken, dotted and dash-dotted lines in these graphs
correspond to parameter values of the scaled masses m/m∗ = 100, 200 and 1600, respectively. Solid lines
are fits of |�G(t)| to the function (62) using Table 1, together with the time-oscillation period (58), but they
are visually indistinguishable from the graphs of |�G(t)| except for short times

(50). In Figs. 3 and 4, it is important to note that there is no time-oscillation of �G(t) for
0 ≤ m/m∗ < 1, while we do observe time-oscillations of �G(t) for m/m∗ > 1, in agreement
with a critical mass (57), above which G(t) oscillates in time. The decay of |�G(t)| to zero
as a function of t is faster for larger masses for 0 ≤ m/m∗ < 1 (cf. Fig. 3), but slower for
larger masses for m/m∗ > 1 (cf. Figs. 3 and 4).

To check that the time oscillation period Tm given by (58) indeed appears in G(t), we
fitted the data for �G(t) to the function

�G(t)
t→+∞∼ ae−bt sin

(
2π

Tm

t + c

)
(62)

with fitting parameters a, b and c in Fig. 4. The values of the fitting parameters a, b and c

are given in Table 1. The function (62) is then sufficiently close to �G(t) over many time-
oscillation periods (except for short times), to suggest that the time-oscillations of G(t) may
well have the same origin as those in the position x̃∗

s . Similarly for Fig. 3, using the fitting
function (62) we can also check that the time-oscillation periods of |�G(t)| in this figure
are given by (58). We fully realize that Figs. 3 and 4 are not enough to specify convinc-
ingly the form of the decay of �G(t). In (62) we assumed an exponential decay by a factor
a exp(−bt), which seems to fit reasonably well the data in Fig. 4. However, values of the
fitting parameters a and b shown in Table 1 appear to vary non-negligibly if we fit data
including longer time periods than the ones shown in Fig. 4. In this sense, at this stage,
the exponential factor in (62) should be regarded only as a convenience to check numeri-
cally the time oscillation period Tm appearing in �G(t), rather than claiming an asymptotic
exponential decay of �G(t) of the form (62).

5.3 G(t) in the Comoving Frame

Here we consider G(t) for the work done in the comoving frame, namely the case of ϑ = 0,
in which the work includes effects of a d’Alembert-like force.
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Table 1 Values of the fitting parameters a, b and c for the function (62) plotted in Figs. 4 and 7 for the
parameter values α = κ = 1

Frame (ϑ) m/m∗ Tm a b c

Laboratory (1) 100 31.6 −0.077 0.021 4.4

Laboratory (1) 200 44.5 −0.14 0.011 4.5

Laboratory (1) 1600 125.7 −0.32 0.0017 4.6

Comoving (0) 100 31.6 0.0038 0.021 4.6

Comoving (0) 200 44.5 0.0035 0.011 4.6

Comoving (0) 1600 125.7 0.0032 0.0024 4.7

Fig. 5 (Color online) Graphs of
G(t) = (∂/∂W) ln[Pw(W, t)/

Pw(−W, t)] as a function of time
t for the work done in the
comoving frame (ϑ = 0) in the
case of a nonequilibrium steady
state initial condition for
t ∈ [0,60]. Inset: graphs of G(t)

in a short time period for
t ∈ [0,6]. Lines in these graphs
correspond to parameter values
of the scaled masses m/m∗ = 0
(over-damped case), 0.999, 2, 4,
8, 20 and 40 as indicated above
this figure and we use the same
parameter values α, κ and t0 as
in Fig. 2

Figure 5 shows graphs of G(t) given by (55) as a function of time t . We chose the same
masses as in Fig. 2, namely m/m∗ = 0 (over-damped case), 0.999, 2, 4, 8, 20 and 40 with
the critical mass m∗ = 1/4. It is clear that in Fig. 5 graphs of G(t) approach 1 as t → +∞,
confirming the asymptotic fluctuation theorem (48).

Comparing Fig. 2 with Fig. 5, a dramatic difference in the behavior of G(t) in the two
frames is clearly visible. First, a striking frame-dependence of G(t) is that for any nonzero
mass, G(t) in the comoving frame starts from a finite value at the initial time t0(=0) and
is always larger than 1, in fact going through a maximum to its final value 1. This contrary
to in the laboratory frame where G(t) diverges for t → t0 + 0 and can be smaller than 1
for large masses and long times as discussed in Sect. 5.2. Another remarkable point is that,
different from in the laboratory frame, shown in Fig. 2, G(t) converges to the over-damped
line, much before converging to its final value 1, as shown in Fig. 5. This feature can be
explained by the asymptotic form (56) of G(t), whose right-hand side is independent of the
mass m in the comoving frame (ϑ = 0), so a relaxation behavior of G(t) to its final value 1
in this frame should be close to that of the over-damped case.

Now, we discuss the time-oscillatory behavior of G(t) in the comoving frame. We note
that in the comoving frame the approach of G(t) to its final value 1 is via oscillations around
the over-damped line, contrary to in the laboratory frame where this approach is unrelated
to the over-damped line. Such time-oscillations are already visible for large masses m � m∗
in Fig. 5, but to show them in a more magnified way, we plotted in Fig. 6 the absolute value
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Fig. 6 (Color online) Linear–log
plots of the absolute value
|�G(t)| of the function
�G(t) = G(t) − 1 − τr /(t − τr )

as a function of time t for the
work done in the comoving frame
in the case of a nonequilibrium
steady state initial condition.
Lines in these graphs correspond
to parameter values of the scaled
masses m/m∗ = 0, 0.5, 0.9,
0.999, 1.1, 2, 4 and 20 as
indicated above this figure and
we use the same parameter
values α, κ and t0 as in Fig. 2

Fig. 7 (Color online) Long time behavior of |�G(t)| as a function of time t as linear–log plots for the
work done in the comoving frame in the case of a nonequilibrium steady state initial condition. Here, we
use the same parameter values α, κ and t0 as in Fig. 2. Broken, dotted and dash-dotted lines in these graphs
correspond to parameter values of the scaled masses m/m∗ = 100, 200 and 1600, respectively. Solid lines
are fits of |�G(t)| to the function (62) using Table 1, and they are visually indistinguishable from the graphs
of |�G(t)| except for short times

|�G(t)| of the function �G(t) defined by (61) as a function of time t as linear–log plots.
Here, we plotted data for the scaled masses m/m∗ = 0, 0.5, 0.9, 0.999, 1.1, 2, 4 and 20 and
for the time period t ∈ [0,25]. It is shown in Fig. 6 that time-oscillations of �G(t) occur for
m/m∗ > 1 but not for 0 ≤ m/m∗ < 1. Moreover, �G(t) for 0 ≤ m/m∗ < 1 decays faster,
while �G(t) for m/m∗ > 1 decays slower with time, for increasing mass. These features
are similar to those in the laboratory frame.

In Fig. 7 we show linear–log plots of |�G(t)| as functions of t for longer times t ∈
[0,1000] and for larger masses m/m∗ = 100,200 and 1600 than in Fig. 6. Comparing this
figure in the comoving frame with the corresponding Fig. 4 in the laboratory frame, we can
see that the time-oscillation amplitudes of the function �G(t) in the comoving frame are
much smaller than the corresponding ones in the laboratory frame, except for short times.
This should be noted as an important frame-dependence in the behavior of G(t).
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The time-oscillation periods appearing in Figs. 6 and 7 can be checked by fitting the data
again to the function (62) with the time-oscillation period (58). We only show such fitting
lines for Fig. 7 using the fitting parameters a, b and c of Table 1. Like for the fitting lines in
Fig. 4, the parameter values of a and b in Table 1 in the comoving frame also appear to vary
non-negligibly for data for a longer time period than that shown in Fig. 7. Therefore, as for
Fig. 4, the fitting lines in Fig. 7 should not be regarded as evidence for the exponential decay
in the fitting function (62). However, the fits of their time-oscillation periods of |�G(t)| to
the function (62) in Fig. 7 are satisfactory, which suggests again that the time-oscillations of
G(t) have the same origin as those in the position x̃∗

s , like in the laboratory frame.

6 Summary and Remarks

As a summary of this paper, we have discussed inertial effects related to the particle mass m

in nonequilibrium work distribution functions and their associated fluctuation theorems for
a dragged Brownian particle model confined by a harmonic potential using a path integral
approach for all times: asymptotic as well as finite. We considered two kinds of work: the
work Wl done in the laboratory frame and the work Wc done in the comoving frame and
we calculated the distribution functions Pw(W, t) for them. Using the distributions for the
work in the different frames we analytically proved, for any initial condition, an asymptotic
work fluctuation theorem, which has the same form in both the frames. This contrasts with
what happens for finite times, when for a nonequilibrium steady state initial condition there
are major differences between the work fluctuations in the laboratory and comoving frames.
This was discussed, using the quantity G(t) ≡ (∂/∂W) ln[Pw(W, t)/Pw(−W, t)], which ap-
proaches the value 1 in the long time limit t → +∞ by the asymptotic fluctuation theorem.
The G(t) for the work Wc done in the comoving frame is larger than 1 at all times and con-
verges to the corresponding over-damped value much before converging to its final value 1.
On the other hand, the G(t) for the work Wl done in the laboratory frame can be smaller
than 1 for sufficiently large times and masses, and the relaxation behavior of G(t) to its final
value 1 is very different from that for the over-damped case, even for long times. As one of
the significant effects for finite times, we also discussed the existence of a critical mass m∗,
so that for the mass m > m∗ a time-oscillatory behavior appears in G(t) in both frames.

In the remainder of this section, we make some remarks on the contents in the main text
of this paper.

(1) We have discussed in this paper differences between the works Wl and Wc , which
originate in a frame dependence of the kinetic energy difference due to the d’Alembert-like
force as we discussed in Sect. 3.1. In contrast to the work and the kinetic energy difference,
the heat (as well as the potential energy difference) has the same value in the laboratory
and the comoving frame even in the inertial case. Note that the two works Wl and Wc have
the same average value in the nonequilibrium steady state, because their difference can be
represented as a “boundary term”

Wl −Wc = m(ẋt − ẋt0)v (63)

depending on a difference between the two boundary values of ẋs at the final time s = t

and the initial time s = t0 only, so that the average of this boundary term m(ẋt − ẋt0)v is
zero in the nonequilibrium steady state. Nevertheless, this difference m(ẋt − ẋt0)v between
Wl and Wc causes dramatic differences in the work fluctuations at finite times, as shown in
Sects. 5.2 and 5.3 of this paper.
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Table 2 Correspondences between the dragged Brownian particle model described by (3) and the torsion
pendulum model described by (64)

Brownian particle xs m α κ κv

Torsion pendulum θs I ν C μ

(2) In a different nonequilibrium model described by a linear Langevin equation, [18,
19] considered the motion of a torsion pendulum under an external torque in a fluid. The
corresponding Langevin equation for the angular displacement θs of the pendulum at time s

in this system is then given by

I
d2θs

ds2
= −ν

dθs

ds
− Cθs + Ms + ζs (64)

where I is the total moment of inertia of the mass, ν is the viscous damping, C the elas-
tic torsional stiffness of the pendulum, Ms the external torque, and ζs the Gaussian-white
random force. For this model, [18, 19] considered the case of a linear torque of

Ms = μs (65)

with a force constant μ. It is important to note that (64) with the force (65) has mathe-
matically the same form as the Langevin equation (3) with the correspondences shown in
Table 2. Based on these correspondences between the two models, for example, there should
be a critical value I ∗ of the total moment of inertia above which a similar time-oscillatory
behavior occurs in the pendulum model, like above the critical mass m∗ in the dragged
Brownian particle model treated in this paper.

For the pendulum system, [18, 19] considered the work Wp done by the external torque
Ms on the pendulum (p). This work is given there by

Wp =
∫ t

t0

ds(Ms − Mt0)
dθs

ds
. (66)

Using (65) and the correspondences in Table 2, this work corresponds to a quantity for our
dragged Brownian particle model, viz.

Wp ←→
∫ t

t0

ds κv(s − t0)
dxs

ds
= Wl + κv(t − t0)

[
xt − 1

2
v(t + t0)

]
(67)

which is clearly different from the works Wl and Wc discussed in this paper. In other words,
Wl , Wc and Wp give physically different kinds of work in nonequilibrium steady states
described by a mathematically identical Langevin equation in a dynamical sense. We note
that our Wl and Wc are consequences of the generalized Onsager–Machlup theory in [7]. We
reserve, for a future publication, a general discussion on fluctuation theorems for different
models.

(3) As another nonequilibrium model described by a linear Langevin equation, [25] con-
sidered electric circuit models. In that case the system is described by a first-order linear
Langevin equation, which has the same form as the over-damped Langevin equation for
the dragged Brownian particle model. As a generalization of these electric circuit models,
an inertial effect in the electric circuit can be introduced by including its self-induction.
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A generalization of the arguments of [25] to the case including the self-induction, as well
as a discussion of the effects of self-induction on the nonequilibrium work (and heat) fluc-
tuations, will be addressed in a future paper. Especially, it would be interesting to observe
whether there is a critical value of the self-induction, above which similar oscillatory effects
occur, as appear above the critical mass in the inertial case in this paper.

(4) The critical mass m∗ discussed in this paper for work fluctuations also appears in the
dynamics of the average position 〈xs〉. In order to discuss this point, we note that taking the
average of (3), the average position 〈xs〉 of the particle at time s satisfies

m
d2〈xs〉
ds2

= −α
d〈xs〉
ds

− κ(〈xs〉 − vs) (68)

using 〈ζs〉 = 0. Using ν± defined by (20), the solution of (68) is given by

〈xs〉 = v(s − τr) + C ′e−ν+ s + C ′′e−ν− s (69)

where the constants C ′ and C ′′ are determined by the average initial conditions 〈xt0〉 and
〈ẋt0〉 and are given by

C ′ = − ν−eν+ t0

ν+ − ν−
[〈xt0〉 − v(t0 − τr)] − eν+ t0

ν+ − ν−
(〈ẋt0〉 − v), (70)

C ′′ = ν+eν− t0

ν+ − ν−
[〈xt0〉 − v(t0 − τr)] + eν− t0

ν+ − ν−
(〈ẋt0〉 − v). (71)

Since the ν± include nonzero imaginary parts for m > m∗, a time-oscillatory behavior ap-
pears in the average position 〈xs〉 for masses above this critical mass m∗. This kind of phe-
nomenon was discussed for a damped oscillator model [21], but its effect on fluctuations in
a nonequilibrium steady state has not been discussed to the best of our knowledge.

In [7], we discussed that in the over-damped case, the most probable path, which is a so-
lution of the Euler–Lagrange equation for the Lagrangian function in the Onsager–Machlup
theory, is expressed as a combination of forward and backward paths. This is also true in
the inertial case, in which the most probable path is given by a solution of the “Euler–
Lagrange” equation (16) for λ = 0. To show this, we note that the exponentially decaying
terms exp(−ν+s) and exp(−ν−s) on the right-hand side of (69) refer to a forward path. We
can also introduce the corresponding backward path, as a combination of exponentially di-
vergent terms exp(ν+s) and exp(ν−s). A combination of these forward and backward paths
gives then the most probable path {x∗

s }s∈[t0,t] for λ = 0, i.e. (18).
(5) There is still the open question of an analytical discussion of the asymptotic form

of �G(t) with the time-oscillations shown in Figs. 3, 4, 6 and 7. In this paper we only
analyzed �G(t) numerically by fitting it to the function (62), but in principle, such analytical
information on �G(t) is contained in the general form (55) of G(t).

(6) We have considered the asymptotic fluctuation theorem for work in this paper. We
now address very briefly its connection with other fluctuation theorems.

(6a) One of the other fluctuation theorems is the transient fluctuation theorem [2]. This
fluctuation theorem was already derived and discussed for a dragged Brownian particle
model with inertia in [7]. There, we derived transient fluctuation theorems, not only for the
same works as those in this paper, but also for an energy loss by friction. Different from the
work, the distribution function for the energy loss by friction does not satisfy an asymptotic
fluctuation theorem.
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(6b) Another important fluctuation theorem is the extended heat fluctuation theorem [22,
23, 26]. In [7] we gave a simple derivation of this fluctuation theorem, based on the assump-
tions that (A) a correlation between the work and the energy difference at time t (as well
as a correlation between the energies at the initial time t0 and the final time t ) disappears
in the long time limit t → +∞, (B) the work distribution function approaches a Gaussian
distribution asymptotically in time and satisfies the asymptotic fluctuation theorem, and (C)
the distribution function Pe(E) for energy E is canonical-like, namely Pe(E) ≈ exp(−βE)

for E > 0. The same derivation could be applied to all models which satisfy these three
conditions (A), (B) and (C). In particular, using this derivation, one can derive an analytical
expression for the asymptotic heat distribution function itself, as well as the extended heat
fluctuation theorem not only for the over-damped case, as was done in [7], but also for the
inertial case.

Acknowledgements We gratefully acknowledge financial support of the National Science Foundation,
under award PHY-0501315.

Appendix 1: Asymptotic Property for the Matrix �t

In this appendix we prove (46) for the matrix �t . To show this equation in a simple way,
without losing generality we take the origin of time at (t0 + t)/2 so that the initial time is
given by t0 = −t , only in this appendix.

To consider the structure of the matrix �t defined by (39) in the long time limit t → +∞,
we first calculate the asymptotic form of the matrix ��t�, which is an essential element of
the matrix �t . For this purpose we note

KsKT
s =

⎛
⎜⎜⎝

e2ν+ s e(ν+ +ν− )s e(ν+−ν− )s 1
e(ν+ +ν− )s e2ν− s 1 e−(ν+−ν− )s

e(ν+ −ν− )s 1 e−2ν− s e−(ν++ν− )s

1 e−(ν+−ν− )s e−(ν++ν− )s e−2ν+ s

⎞
⎟⎟⎠ . (72)

Inserting (72) into (41) and using the relation t0 = −t we obtain

�t = 2

⎛
⎜⎜⎜⎜⎜⎝

sinh(2ν+ t)

2ν+
sinh[(ν+ +ν− )t]

ν++ν−
sinh[(ν+ −ν− )t]

ν+−ν−
t

sinh[(ν+ +ν− )t]
ν++ν−

sinh(2ν− t)

2ν−
t

sinh[(ν+ −ν− )t]
ν+−ν−

sinh[(ν+ −ν− )t]
ν+−ν−

t
sinh(2ν− t)

2ν−
sinh[(ν+ +ν− )t]

ν++ν−
t

sinh[(ν+ −ν− )t]
ν+−ν−

sinh[(ν+ +ν− )t]
ν++ν−

sinh(2ν+ t)

2ν+

⎞
⎟⎟⎟⎟⎟⎠

(73)

in terms of the hyperbolic function sinh(x). Equations (34) and (73) lead to

��t� =
(

�t 02

02 02

)
(74)

where 02 is the 2 × 2 null matrix, and the 2 × 2 matrix �t is given by

�t ≡ 4

⎛
⎝ ν+ sinh(2ν+ t)

2ν+ ν−
ν++ν−

sinh[(ν+ + ν−)t]
2ν+ ν−
ν++ν−

sinh[(ν+ + ν−)t] ν− sinh(2ν− t)

⎞
⎠
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t→+∞∼ 2

⎛
⎝ ν+e2ν+ t 2ν+ ν−

ν++ν−
e(ν+ +ν− )t

2ν+ ν−
ν++ν−

e(ν++ν− )t ν−e2ν− t

⎞
⎠

= 2

(
eν+ t 0

0 eν− t

)⎛
⎝ ν+

2ν+ ν−
ν++ν−

2ν+ ν−
ν+ +ν−

ν−

⎞
⎠

(
eν+ t 0

0 eν− t

)
. (75)

Here, we used the positivity Re{ν±} > 0 of the real part of ν± (assuming a nonzero mass

m �= 0 and a nonzero spring constant κ �= 0) and also sinh(at)
t→+∞∼ (1/2) exp(at) for any

number a with the positive real part Re{a} > 0.
Second, we obtain a simplified form of the matrix A−1

t in the long time limit, which is
another essential element of the matrix �t . Noting again that the real part of the number ν± is
(strictly non-zero) positive and the initial time is given by t0 = −t , we obtain the asymptotic
form of the matrix At defined by (25) as

At

t→+∞∼
(

02 A
(1)
t

A
(2)
t 02

)
(76)

for the long time limit t → +∞. Here, 02 is the 2 × 2 null matrix, and A
(j)
t , j = 1,2 are

defined by

A
(1)
t ≡

(
eν− t eν+ t

−ν−eν− t −ν+eν+ t

)
, (77)

A
(2)
t ≡

(
eν+ t eν− t

ν+eν+ t ν−eν− t

)
. (78)

From (76) we derive

A−1
t

t→+∞∼
(

02 A
(2)
t

−1

A
(1)
t

−1 02

)
(79)

where A
(1)
t

−1 and A
(2)
t

−1 are given by

A
(1)
t

−1 = 1

ν− − ν+

(−ν+e−ν− t −e−ν− t

ν−e−ν+ t e−ν+ t

)
, (80)

A
(2)
t

−1 = 1

ν− − ν+

(
ν−e−ν+ t −e−ν+ t

−ν+e−ν− t e−ν− t

)
. (81)

Equation (79) gives an asymptotic form for the matrix A−1
t .

Finally, using (39), (74) and (79) we obtain the asymptotic form of the matrix �t as

�t

t→+∞∼
(

02 02

02 [A(2)
t

−1]T �tA
(2)
t

−1

)
. (82)

Here, using (75) and (81) the non-vanishing matrix elements of the matrix (82) are given by

[A(2)
t

−1]T �tA
(2)
t

−1 t→+∞∼ 2

( ν+ ν−
ν++ν−

0

0 1
ν++ν−

)
= 2

α

(
κ 0
0 m

)
(83)
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where we used ν+ + ν− = α/m and ν+ν− = κ/m. By (82) and (83) we obtain

lim
t→+∞�t = 2

α

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 κ 0
0 0 0 m

⎞
⎟⎟⎠ . (84)

Equation (84) shows that the matrix �t approaches a time-independent constant matrix in
the long time limit t → +∞. Therefore, the matrix �t/(t − t0) approaches the 4 × 4 null
matrix in the long time limit t → +∞, implying that the condition (46) is satisfied.

Appendix 2: Work Distribution for the Nonequilibrium Steady State

In this appendix we give a derivation of (52) for the work distribution function P (W, t) in
the case of the nonequilibrium steady state initial condition (51).

First, we note that the initial distribution function (51) can be written in the form

f (xi,pi, t0) = β

2π

√
κ

m
exp

{
−αβ

4
[B(1)

if ]T �(0)B(1)
if

}
, (85)

using (26) and (54). Equation (85) means that the initial distribution function f (xi,pi, t0)

is Gaussian for the components of the vector B(1)
if . Using (85) and the vector B(1)

if given by
(26), the work distribution function (44) can be represented by

Pw(W, t) = CEmβ

4πv

√
κm

παβ(t − t0 − τ 2
r JT �tJ)

×
∫ ∫ ∫ ∫

dB(1)
if exp

[
−1

4
αβ[B(1)

if ]T (�(0) + �t)B
(1)
if

]

× exp

{
−[αβv(ηT − τrJT �t)B

(1)
if − W + αβv2(t − t0)]2

4αβv2(t − t0 − τ 2
r JT �tJ)

}
(86)

where we used the relation dxidpidxf dpf = m2dB(1)
if because of (26).

Now, we note that

(ãT x̃ + b̃)2 + x̃T C̃x̃

= x̃T (ããT + C̃)x̃ + 2b̃ãT x̃ + b̃2

= [x̃ + b̃(ããT + C̃)−1ã]T (ããT + C̃)[x̃ + b̃(ããT + C̃)−1ã] + b̃2[1 − ãT (ããT + C̃)−1ã] (87)

for any n-dimensional vectors ã and x̃, any scalar b̃, and any n × n symmetric matrix C̃ for
which the inverse matrix of ããT + C̃ exists. Applying (87) to (86) for the case of x̃ = B(1)

if ,

ã = αβv(η − τr�tJ), b̃ = αβv2(t − t0)−W and C̃ = (αβv)2(t − t0 − τ 2
r JT �tJ)(�(0) +�t),

and carrying out the integral over B(1)
if (= x̃) in (86), we obtain

Pw(W, t) = CEmβ

4πv

√
κm

παβ(t − t0 − τ 2
r JT �tJ)
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×
∫ ∫ ∫ ∫

dx̃ exp

{
− (ãT x̃ + b̃)2 + x̃T C̃x̃

4αβv2(t − t0 − τ 2
r JT �tJ)

}

= C ′
w exp

{
− [1 − ãT (ããT + C̃)−1ã]

4αβv2(t − t0 − τ 2
r JT �tJ)

b̃2

}

= C ′
w exp

{
− 1 − �t

4αβv2(t − t0 − τ 2
r JT �tJ)

[W − αβv2(t − t0)]2

}
(88)

using (53) for �t . The constant C ′
w in (88) can be determined by the normalization condition∫

dW P(W, t) = 1 and then (88) gives (52).

Appendix 3: Asymptotic Form of G(t)

In this appendix we derive (56) for G(t).
The essential point to derive (56) for G(t) is the asymptotic form (84), or equivalently

lim
t→+∞ �t = 2

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 1/τr 0
0 0 0 τm

⎞
⎟⎟⎠ (89)

in terms of τr = α/κ and τm = m/α. Using (40, 45, 54, 89) we obtain

lim
t→+∞ JT �tJ = 2/τr , (90)

lim
t→+∞(η − τr�tJ) =

⎛
⎜⎜⎝

−1
−τmϑ

−1
τmϑ

⎞
⎟⎟⎠ , (91)

lim
t→+∞(�(0) + �t) = 2

⎛
⎜⎜⎝

1/τr 0 0 0
0 τm 0 0
0 0 1/τr 0
0 0 0 τm

⎞
⎟⎟⎠ . (92)

Equations (90–92) lead to

[(η − τr�tJ)(η − τr�tJ)T + (t − t0 − τ 2
r JT �tJ)(�(0) + �t)]−1

t→+∞∼ τr

2(t − t0 − 2τr)�t

⎛
⎜⎜⎜⎝

�t − τr −ϑ −τr ϑ

−ϑ �t −τmϑ2

τr τm
−ϑ ϑ2

τr−τr −ϑ �t − τr ϑ

ϑ ϑ2

τr
ϑ �t −τmϑ2

τr τm

⎞
⎟⎟⎟⎠ (93)

with �t ≡ 2(t − t0 − τr + ϑ2τm). By (53, 91, 93), we obtain

�t

t→+∞∼ τr + τmϑ2

t − t0 − τr + τmϑ2
. (94)

From (55, 90, 94) we derive (56).
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